summaryrefslogtreecommitdiff
path: root/gnu/packages/machine-learning.scm
blob: 7b9b28a2eb8fc48bf6eac7f8c92511151b756c06 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
;;; GNU Guix --- Functional package management for GNU
;;; Copyright © 2015, 2016, 2017, 2018 Ricardo Wurmus <rekado@elephly.net>
;;; Copyright © 2016 Efraim Flashner <efraim@flashner.co.il>
;;; Copyright © 2016, 2017 Marius Bakke <mbakke@fastmail.com>
;;; Copyright © 2016 Hartmut Goebel <h.goebel@crazy-compilers.com>
;;; Copyright © 2018 Tobias Geerinckx-Rice <me@tobias.gr>
;;; Copyright © 2018 Kei Kebreau <kkebreau@posteo.net>
;;; Copyright © 2018 Mark Meyer <mark@ofosos.org>
;;; Copyright © 2018 Ben Woodcroft <donttrustben@gmail.com>
;;; Copyright © 2018 Fis Trivial <ybbs.daans@hotmail.com>
;;; Copyright © 2018 Julien Lepiller <julien@lepiller.eu>
;;;
;;; This file is part of GNU Guix.
;;;
;;; GNU Guix is free software; you can redistribute it and/or modify it
;;; under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 3 of the License, or (at
;;; your option) any later version.
;;;
;;; GNU Guix is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with GNU Guix.  If not, see <http://www.gnu.org/licenses/>.

(define-module (gnu packages machine-learning)
  #:use-module ((guix licenses) #:prefix license:)
  #:use-module (guix packages)
  #:use-module (guix utils)
  #:use-module (guix download)
  #:use-module (guix svn-download)
  #:use-module (guix build-system cmake)
  #:use-module (guix build-system gnu)
  #:use-module (guix build-system ocaml)
  #:use-module (guix build-system python)
  #:use-module (guix build-system r)
  #:use-module (guix git-download)
  #:use-module (gnu packages)
  #:use-module (gnu packages algebra)
  #:use-module (gnu packages autotools)
  #:use-module (gnu packages boost)
  #:use-module (gnu packages check)
  #:use-module (gnu packages compression)
  #:use-module (gnu packages cran)
  #:use-module (gnu packages dejagnu)
  #:use-module (gnu packages gcc)
  #:use-module (gnu packages image)
  #:use-module (gnu packages maths)
  #:use-module (gnu packages mpi)
  #:use-module (gnu packages ocaml)
  #:use-module (gnu packages onc-rpc)
  #:use-module (gnu packages perl)
  #:use-module (gnu packages pkg-config)
  #:use-module (gnu packages python)
  #:use-module (gnu packages statistics)
  #:use-module (gnu packages swig)
  #:use-module (gnu packages xml)
  #:use-module (gnu packages xorg))

(define-public fann
  ;; The last release is >100 commits behind, so we package from git.
  (let ((commit "d71d54788bee56ba4cf7522801270152da5209d7"))
    (package
      (name "fann")
      (version (string-append "2.2.0-1." (string-take commit 8)))
      (source (origin
                (method git-fetch)
                (uri (git-reference
                      (url "https://github.com/libfann/fann.git")
                      (commit commit)))
                (file-name (string-append name "-" version "-checkout"))
                (sha256
                 (base32
                  "0ibwpfrjs6q2lijs8slxjgzb2llcl6rk3v2ski4r6215g5jjhg3x"))))
      (build-system cmake-build-system)
      (arguments
       `(#:phases
         (modify-phases %standard-phases
           (replace 'check
             (lambda* (#:key outputs #:allow-other-keys)
               (let* ((out (assoc-ref outputs "out")))
                 (with-directory-excursion (string-append (getcwd) "/tests")
                   (invoke "./fann_tests"))))))))
      (home-page "http://leenissen.dk/fann/wp/")
      (synopsis "Fast Artificial Neural Network")
      (description
       "FANN is a free open source neural network library, which implements
multilayer artificial neural networks in C with support for both fully
connected and sparsely connected networks.")
      (license license:lgpl2.1))))

(define-public libsvm
  (package
    (name "libsvm")
    (version "3.22")
    (source
     (origin
       (method url-fetch)
       (uri (string-append "https://www.csie.ntu.edu.tw/~cjlin/libsvm/"
                           name "-" version ".tar.gz"))
       (sha256
        (base32
         "0zd7s19y5vb7agczl6456bn45cj1y64739sslaskw1qk7dywd0bd"))))
    (build-system gnu-build-system)
    (arguments
     `(#:tests? #f ;no "check" target
       #:phases (modify-phases %standard-phases
                  (delete 'configure)
                  (replace
                   'install             ; no ‘install’ target
                   (lambda* (#:key outputs #:allow-other-keys)
                     (let* ((out (assoc-ref outputs "out"))
                            (bin (string-append out "/bin/")))
                       (mkdir-p bin)
                       (for-each (lambda (file)
                                   (copy-file file (string-append bin file)))
                                 '("svm-train"
                                   "svm-predict"
                                   "svm-scale")))
                     #t)))))
    (home-page "http://www.csie.ntu.edu.tw/~cjlin/libsvm/")
    (synopsis "Library for Support Vector Machines")
    (description
     "LIBSVM is a machine learning library for support vector
classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and
distribution estimation (one-class SVM).  It supports multi-class
classification.")
    (license license:bsd-3)))

(define-public python-libsvm
  (package (inherit libsvm)
    (name "python-libsvm")
    (build-system gnu-build-system)
    (arguments
     `(#:tests? #f ;no "check" target
       #:make-flags '("-C" "python")
       #:phases
       (modify-phases %standard-phases
         (delete 'configure)
         (replace
          'install                      ; no ‘install’ target
          (lambda* (#:key inputs outputs #:allow-other-keys)
            (let ((site (string-append (assoc-ref outputs "out")
                                       "/lib/python"
                                       (string-take
                                        (string-take-right
                                         (assoc-ref inputs "python") 5) 3)
                                       "/site-packages/")))
              (substitute* "python/svm.py"
                (("../libsvm.so.2") "libsvm.so.2"))
              (mkdir-p site)
              (for-each (lambda (file)
                          (copy-file file (string-append site (basename file))))
                        (find-files "python" "\\.py"))
              (copy-file "libsvm.so.2"
                         (string-append site "libsvm.so.2")))
            #t)))))
    (inputs
     `(("python" ,python)))
    (synopsis "Python bindings of libSVM")))

(define-public ghmm
  ;; The latest release candidate is several years and a couple of fixes have
  ;; been published since.  This is why we download the sources from the SVN
  ;; repository.
  (let ((svn-revision 2341))
    (package
      (name "ghmm")
      (version (string-append "0.9-rc3-0." (number->string svn-revision)))
      (source (origin
                (method svn-fetch)
                (uri (svn-reference
                      (url "http://svn.code.sf.net/p/ghmm/code/trunk")
                      (revision svn-revision)))
                (file-name (string-append name "-" version))
                (sha256
                 (base32
                  "0qbq1rqp94l530f043qzp8aw5lj7dng9wq0miffd7spd1ff638wq"))))
      (build-system gnu-build-system)
      (arguments
       `(#:imported-modules (,@%gnu-build-system-modules
                             (guix build python-build-system))
         #:phases
         (modify-phases %standard-phases
           (add-after 'unpack 'enter-dir
             (lambda _ (chdir "ghmm") #t))
           (delete 'check)
           (add-after 'install 'check
             (assoc-ref %standard-phases 'check))
           (add-before 'check 'fix-PYTHONPATH
             (lambda* (#:key inputs outputs #:allow-other-keys)
               (let ((python-version ((@@ (guix build python-build-system)
                                           get-python-version)
                                      (assoc-ref inputs "python"))))
                 (setenv "PYTHONPATH"
                         (string-append (getenv "PYTHONPATH")
                                        ":" (assoc-ref outputs "out")
                                        "/lib/python" python-version
                                        "/site-packages")))
               #t))
           (add-after 'enter-dir 'fix-runpath
             (lambda* (#:key outputs #:allow-other-keys)
               (substitute* "ghmmwrapper/setup.py"
                 (("^(.*)extra_compile_args = \\[" line indent)
                  (string-append indent
                                 "extra_link_args = [\"-Wl,-rpath="
                                 (assoc-ref outputs "out") "/lib\"],\n"
                                 line
                                 "\"-Wl,-rpath="
                                 (assoc-ref outputs "out")
                                 "/lib\", ")))
               #t))
           (add-after 'enter-dir 'disable-broken-tests
             (lambda _
               (substitute* "tests/Makefile.am"
                 ;; GHMM_SILENT_TESTS is assumed to be a command.
                 (("TESTS_ENVIRONMENT.*") "")
                 ;; Do not build broken tests.
                 (("chmm .*") "")
                 (("read_fa .*") "")
                 (("mcmc .*") "")
                 (("label_higher_order_test.*$")
                  "label_higher_order_test\n"))

               ;; These Python unittests are broken as there is no gato.
               ;; See https://sourceforge.net/p/ghmm/support-requests/3/
               (substitute* "ghmmwrapper/ghmmunittests.py"
                 (("^(.*)def (testNewXML|testMultipleTransitionClasses|testNewXML)"
                   line indent)
                  (string-append indent
                                 "@unittest.skip(\"Disabled by Guix\")\n"
                                 line)))
               #t))
           (add-after 'disable-broken-tests 'autogen
             (lambda _
               (invoke "bash" "autogen.sh"))))))
      (inputs
       `(("python" ,python-2) ; only Python 2 is supported
         ("libxml2" ,libxml2)))
      (native-inputs
       `(("pkg-config" ,pkg-config)
         ("dejagnu" ,dejagnu)
         ("swig" ,swig)
         ("autoconf" ,autoconf)
         ("automake" ,automake)
         ("libtool" ,libtool)))
      (home-page "http://ghmm.org")
      (synopsis "Hidden Markov Model library")
      (description
       "The General Hidden Markov Model library (GHMM) is a C library with
additional Python bindings implementing a wide range of types of @dfn{Hidden
Markov Models} (HMM) and algorithms: discrete, continuous emissions, basic
training, HMM clustering, HMM mixtures.")
      (license license:lgpl2.0+))))

(define-public mcl
  (package
    (name "mcl")
    (version "14.137")
    (source (origin
              (method url-fetch)
              (uri (string-append
                    "http://micans.org/mcl/src/mcl-"
                    (string-replace-substring version "." "-")
                    ".tar.gz"))
              (sha256
               (base32
                "15xlax3z31lsn62vlg94hkm75nm40q4679amnfg13jm8m2bnhy5m"))))
    (build-system gnu-build-system)
    (arguments
     `(#:configure-flags (list "--enable-blast")))
    (inputs
     `(("perl" ,perl)))
    (home-page "http://micans.org/mcl/")
    (synopsis "Clustering algorithm for graphs")
    (description
     "The MCL algorithm is short for the @dfn{Markov Cluster Algorithm}, a
fast and scalable unsupervised cluster algorithm for graphs (also known as
networks) based on simulation of (stochastic) flow in graphs.")
    ;; In the LICENCE file and web page it says "The software is licensed
    ;; under the GNU General Public License, version 3.", but in several of
    ;; the source code files it suggests GPL3 or later.
    ;; http://listserver.ebi.ac.uk/pipermail/mcl-users/2016/000376.html
    (license license:gpl3)))

(define-public ocaml-mcl
  (package
    (name "ocaml-mcl")
    (version "12-068oasis4")
    (source
     (origin
       (method url-fetch)
       (uri (string-append
             "https://github.com/fhcrc/mcl/archive/"
             version ".tar.gz"))
       (file-name (string-append name "-" version ".tar.gz"))
       (sha256
        (base32
         "1l5jbhwjpsj38x8b9698hfpkv75h8hn3kj0gihjhn8ym2cwwv110"))))
    (build-system ocaml-build-system)
    (arguments
     `(#:ocaml ,ocaml-4.02
       #:findlib ,ocaml4.02-findlib
       #:phases
       (modify-phases %standard-phases
         (add-before 'configure 'patch-paths
           (lambda _
             (substitute* "configure"
               (("SHELL = /bin/sh") (string-append "SHELL = "(which "sh"))))
             (substitute* "setup.ml"
               (("LDFLAGS=-fPIC")
                (string-append "LDFLAGS=-fPIC\"; \"SHELL=" (which "sh"))))
             #t)))))
    (home-page "https://github.com/fhcrc/mcl")
    (synopsis "OCaml wrappers around MCL")
    (description
     "This package provides OCaml bindings for the MCL graph clustering
algorithm.")
    (license license:gpl3)))

(define-public ocaml4.01-mcl
  (package-with-ocaml4.01 ocaml-mcl))

(define-public randomjungle
  (package
    (name "randomjungle")
    (version "2.1.0")
    (source
     (origin
       (method url-fetch)
       (uri (string-append
             "http://www.imbs-luebeck.de/imbs/sites/default/files/u59/"
             "randomjungle-" version ".tar_.gz"))
       (patches (search-patches "randomjungle-disable-static-build.patch"))
       (sha256
        (base32
         "12c8rf30cla71swx2mf4ww9mfd8jbdw5lnxd7dxhyw1ygrvg6y4w"))))
    (build-system gnu-build-system)
    (arguments
     `(#:configure-flags
       (list "--disable-static"
             (string-append "--with-boost="
                            (assoc-ref %build-inputs "boost")))
       #:phases
       (modify-phases %standard-phases
         (add-before
          'configure 'set-CXXFLAGS
          (lambda _
            (setenv "CXXFLAGS" "-fpermissive ")
            #t)))))
    (inputs
     `(("boost" ,boost)
       ("gsl" ,gsl)
       ("libxml2" ,libxml2)
       ("zlib" ,zlib)))
    (native-inputs
     `(("gfortran" ,gfortran)
       ("gfortran:lib" ,gfortran "lib")))
    ;; Non-portable assembly instructions are used so building fails on
    ;; platforms other than x86_64 or i686.
    (supported-systems '("x86_64-linux" "i686-linux"))
    (home-page "http://www.imbs-luebeck.de/imbs/de/node/227/")
    (synopsis "Implementation of the Random Forests machine learning method")
    (description
     "Random Jungle is an implementation of Random Forests.  It is supposed to
analyse high dimensional data.  In genetics, it can be used for analysing big
Genome Wide Association (GWA) data.  Random Forests is a powerful machine
learning method.  Most interesting features are variable selection, missing
value imputation, classifier creation, generalization error estimation and
sample proximities between pairs of cases.")
    (license license:gpl3+)))

(define-public shogun
  (package
    (name "shogun")
    (version "6.1.3")
    (source
     (origin
       (method url-fetch)
       (uri (string-append
             "ftp://shogun-toolbox.org/shogun/releases/"
             (version-major+minor version)
             "/sources/shogun-" version ".tar.bz2"))
       (sha256
        (base32
         "1rn9skm3nw6hr7mr3lgp2gfqhi7ii0lyxck7qmqnf8avq349s5jp"))
       (modules '((guix build utils)
                  (ice-9 rdelim)))
       (snippet
        '(begin
           ;; Remove non-free sources and files referencing them
           (for-each delete-file
                     (find-files "src/shogun/classifier/svm/"
                                 "SVMLight\\.(cpp|h)"))
           (for-each delete-file
                     (find-files "examples/undocumented/libshogun/"
                                 (string-append
                                  "(classifier_.*svmlight.*|"
                                  "evaluation_cross_validation_locked_comparison).cpp")))
           ;; Remove non-free functions.
           (define (delete-ifdefs file)
             (with-atomic-file-replacement file
               (lambda (in out)
                 (let loop ((line (read-line in 'concat))
                            (skipping? #f))
                   (if (eof-object? line)
                       #t
                       (let ((skip-next?
                              (or (and skipping?
                                       (not (string-prefix?
                                             "#endif //USE_SVMLIGHT" line)))
                                  (string-prefix?
                                   "#ifdef USE_SVMLIGHT" line))))
                         (when (or (not skipping?)
                                   (and skipping? (not skip-next?)))
                           (display line out))
                         (loop (read-line in 'concat) skip-next?)))))))
           (for-each delete-ifdefs
                     (append
                      (find-files "src/shogun/classifier/mkl"
                                  "^MKLClassification\\.cpp")
                      (find-files "src/shogun/classifier/svm"
                                  "^SVMLightOneClass\\.(cpp|h)")
                      (find-files "src/shogun/multiclass"
                                  "^ScatterSVM\\.(cpp|h)")
                      (find-files "src/shogun/kernel/"
                                  "^(Kernel|CombinedKernel|ProductKernel)\\.(cpp|h)")
                      (find-files "src/shogun/regression/svr"
                                  "^(MKLRegression|SVRLight)\\.(cpp|h)")
                      (find-files "src/shogun/transfer/domain_adaptation"
                                  "^DomainAdaptationSVM\\.(cpp|h)")))
           #t))))
    (build-system cmake-build-system)
    (arguments
     '(#:tests? #f ;no check target
       #:phases
       (modify-phases %standard-phases
         (add-after 'unpack 'delete-broken-symlinks
           (lambda _
             (for-each delete-file '("applications/arts/data"
                                     "applications/asp/data"
                                     "applications/easysvm/data"
                                     "applications/msplicer/data"
                                     "applications/ocr/data"
                                     "examples/meta/data"
                                     "examples/undocumented/data"))
             #t))
         (add-after 'unpack 'change-R-target-path
           (lambda* (#:key outputs #:allow-other-keys)
             (substitute* '("src/interfaces/r/CMakeLists.txt"
                            "examples/meta/r/CMakeLists.txt")
               (("\\$\\{R_COMPONENT_LIB_PATH\\}")
                (string-append (assoc-ref outputs "out")
                               "/lib/R/library/")))
             #t))
         (add-after 'unpack 'fix-octave-modules
           (lambda* (#:key outputs #:allow-other-keys)
             (substitute* "src/interfaces/octave/CMakeLists.txt"
               (("^include_directories\\(\\$\\{OCTAVE_INCLUDE_DIRS\\}")
                "include_directories(${OCTAVE_INCLUDE_DIRS} ${OCTAVE_INCLUDE_DIRS}/octave")
               ;; change target directory
               (("\\$\\{OCTAVE_OCT_LOCAL_API_FILE_DIR\\}")
                (string-append (assoc-ref outputs "out")
                               "/share/octave/packages")))
             (substitute* '("src/interfaces/octave/swig_typemaps.i"
                            "src/interfaces/octave/sg_print_functions.cpp")
               ;; "octave/config.h" and "octave/oct-obj.h" deprecated in Octave.
               (("octave/config\\.h") "octave/octave-config.h")
               (("octave/oct-obj.h") "octave/ovl.h"))
             #t))
         (add-after 'unpack 'move-rxcpp
           (lambda* (#:key inputs #:allow-other-keys)
             (let ((rxcpp-dir "shogun/third-party/rxcpp"))
               (mkdir-p rxcpp-dir)
               (install-file (assoc-ref inputs "rxcpp") rxcpp-dir)
               #t)))
         (add-before 'build 'set-HOME
           ;; $HOME needs to be set at some point during the build phase
           (lambda _ (setenv "HOME" "/tmp") #t)))
       #:configure-flags
       (list "-DCMAKE_BUILD_WITH_INSTALL_RPATH=TRUE"
             "-DUSE_SVMLIGHT=OFF" ;disable proprietary SVMLIGHT
             "-DBUILD_META_EXAMPLES=OFF" ;requires unpackaged ctags
             ;;"-DINTERFACE_JAVA=ON" ;requires unpackaged jblas
             ;;"-DINTERFACE_RUBY=ON" ;requires unpackaged ruby-narray
             ;;"-DINTERFACE_PERL=ON" ;"FindPerlLibs" does not exist
             ;;"-DINTERFACE_LUA=ON"  ;fails because lua doesn't build pkgconfig file
             "-DINTERFACE_OCTAVE=ON"
             "-DINTERFACE_PYTHON=ON"
             "-DINTERFACE_R=ON")))
    (inputs
     `(("python" ,python)
       ("numpy" ,python-numpy)
       ("r-minimal" ,r-minimal)
       ("octave" ,octave)
       ("swig" ,swig)
       ("eigen" ,eigen)
       ("hdf5" ,hdf5)
       ("atlas" ,atlas)
       ("arpack" ,arpack-ng)
       ("lapack" ,lapack)
       ("glpk" ,glpk)
       ("libxml2" ,libxml2)
       ("lzo" ,lzo)
       ("zlib" ,zlib)))
    (native-inputs
     `(("pkg-config" ,pkg-config)
       ("rxcpp" ,rxcpp)))
    ;; Non-portable SSE instructions are used so building fails on platforms
    ;; other than x86_64.
    (supported-systems '("x86_64-linux"))
    (home-page "http://shogun-toolbox.org/")
    (synopsis "Machine learning toolbox")
    (description
     "The Shogun Machine learning toolbox provides a wide range of unified and
efficient Machine Learning (ML) methods.  The toolbox seamlessly allows to
combine multiple data representations, algorithm classes, and general purpose
tools.  This enables both rapid prototyping of data pipelines and extensibility
in terms of new algorithms.")
    (license license:gpl3+)))

(define-public rxcpp
  (package
    (name "rxcpp")
    (version "4.0.0")
    (source
     (origin
       (method url-fetch)
       (uri (string-append "https://github.com/ReactiveX/RxCpp/archive/v"
                           version ".tar.gz"))
       (sha256
        (base32
         "0y2isr8dy2n1yjr9c5570kpc9lvdlch6jv0jvw000amwn5d3krsh"))
       (file-name (string-append name "-" version ".tar.gz"))))
    (build-system cmake-build-system)
    (arguments
     `(#:phases
       (modify-phases %standard-phases
         (add-after 'unpack 'remove-werror
           (lambda _
             (substitute* (find-files ".")
               (("-Werror") ""))
             #t))
         (replace 'check
           (lambda _
             (invoke "ctest"))))))
    (native-inputs
     `(("catch" ,catch-framework)))
    (home-page "http://reactivex.io/")
    (synopsis "Reactive Extensions for C++")
    (description
     "The Reactive Extensions for C++ (RxCpp) is a library of algorithms for
values-distributed-in-time.  ReactiveX is a library for composing asynchronous
and event-based programs by using observable sequences.

It extends the observer pattern to support sequences of data and/or events and
adds operators that allow you to compose sequences together declaratively while
abstracting away concerns about things like low-level threading,
synchronization, thread-safety, concurrent data structures, and non-blocking
I/O.")
    (license license:asl2.0)))

(define-public r-adaptivesparsity
  (package
    (name "r-adaptivesparsity")
    (version "1.6")
    (source (origin
              (method url-fetch)
              (uri (cran-uri "AdaptiveSparsity" version))
              (sha256
               (base32
                "0imr5m8mll9j6n4icsv6z9rl5kbnwsp9wvzrg7n90nnmcxq2cz91"))))
    (properties
     `((upstream-name . "AdaptiveSparsity")))
    (build-system r-build-system)
    (arguments
     `(#:phases
       (modify-phases %standard-phases
         (add-after 'unpack 'link-against-armadillo
           (lambda _
             (substitute* "src/Makevars"
               (("PKG_LIBS=" prefix)
                (string-append prefix "-larmadillo"))))))))
    (propagated-inputs
     `(("r-mass" ,r-mass)
       ("r-matrix" ,r-matrix)
       ("r-rcpp" ,r-rcpp)
       ("r-rcpparmadillo" ,r-rcpparmadillo)))
    (inputs
     `(("armadillo" ,armadillo)))
    (home-page "https://cran.r-project.org/web/packages/AdaptiveSparsity")
    (synopsis "Adaptive sparsity models")
    (description
     "This package implements the Figueiredo machine learning algorithm for
adaptive sparsity and the Wong algorithm for adaptively sparse gaussian
geometric models.")
    (license license:lgpl3+)))

(define-public r-kernlab
  (package
    (name "r-kernlab")
    (version "0.9-27")
    (source
     (origin
       (method url-fetch)
       (uri (cran-uri "kernlab" version))
       (sha256
        (base32
         "1m0xqf6gyvwayz7w3c83y32ayvnlz0jicj8ijk808zq9sh7dbbgn"))))
    (build-system r-build-system)
    (home-page "https://cran.r-project.org/web/packages/kernlab")
    (synopsis "Kernel-based machine learning tools")
    (description
     "This package provides kernel-based machine learning methods for
classification, regression, clustering, novelty detection, quantile regression
and dimensionality reduction.  Among other methods @code{kernlab} includes
Support Vector Machines, Spectral Clustering, Kernel PCA, Gaussian Processes
and a QP solver.")
    (license license:gpl2)))

(define-public dlib
  (package
    (name "dlib")
    (version "19.7")
    (source (origin
              (method url-fetch)
              (uri (string-append
                    "http://dlib.net/files/dlib-" version ".tar.bz2"))
              (sha256
               (base32
                "1mljz02kwkrbggyncxv5fpnyjdybw2qihaacb3js8yfkw12vwpc2"))
              (modules '((guix build utils)))
              (snippet
               '(begin
                  ;; Delete ~13MB of bundled dependencies.
                  (delete-file-recursively "dlib/external")
                  (delete-file-recursively "docs/dlib/external")
                  #t))))
    (build-system cmake-build-system)
    (arguments
     `(#:phases
       (modify-phases %standard-phases
         (add-after 'unpack 'disable-asserts
           (lambda _
             ;; config.h recommends explicitly enabling or disabling asserts
             ;; when building as a shared library. By default neither is set.
             (substitute* "dlib/config.h"
               (("^//#define DLIB_DISABLE_ASSERTS") "#define DLIB_DISABLE_ASSERTS"))
             #t))
         (add-after 'disable-asserts 'disable-failing-tests
           (lambda _
             ;; One test times out on MIPS, so we need to disable it.
             ;; Others are flaky on some platforms.
             (let* ((system ,(or (%current-target-system)
                                 (%current-system)))
                    (disabled-tests (cond
                                     ((string-prefix? "mips64" system)
                                      '("object_detector" ; timeout
                                        "data_io"))
                                     ((string-prefix? "armhf" system)
                                      '("learning_to_track"))
                                     ((string-prefix? "i686" system)
                                      '("optimization"))
                                     (else '()))))
               (for-each
                (lambda (test)
                  (substitute* "dlib/test/makefile"
                    (((string-append "SRC \\+= " test "\\.cpp")) "")))
                disabled-tests)
               #t)))
         (replace 'check
           (lambda _
             ;; No test target, so we build and run the unit tests here.
             (let ((test-dir (string-append "../dlib-" ,version "/dlib/test")))
               (with-directory-excursion test-dir
                 (invoke "make" "-j" (number->string (parallel-job-count)))
                 (invoke "./dtest" "--runall"))
               #t)))
         (add-after 'install 'delete-static-library
           (lambda* (#:key outputs #:allow-other-keys)
             (delete-file (string-append (assoc-ref outputs "out")
                                         "/lib/libdlib.a"))
             #t)))))
    (native-inputs
     `(("pkg-config" ,pkg-config)
       ;; For tests.
       ("libnsl" ,libnsl)))
    (inputs
     `(("giflib" ,giflib)
       ("lapack" ,lapack)
       ("libjpeg" ,libjpeg)
       ("libpng" ,libpng)
       ("libx11" ,libx11)
       ("openblas" ,openblas)
       ("zlib" ,zlib)))
    (synopsis
     "Toolkit for making machine learning and data analysis applications in C++")
    (description
     "Dlib is a modern C++ toolkit containing machine learning algorithms and
tools.  It is used in both industry and academia in a wide range of domains
including robotics, embedded devices, mobile phones, and large high performance
computing environments.")
    (home-page "http://dlib.net")
    (license license:boost1.0)))

(define-public python-scikit-learn
  (package
    (name "python-scikit-learn")
    (version "0.20.1")
    (source
     (origin
       (method git-fetch)
       (uri (git-reference
             (url "https://github.com/scikit-learn/scikit-learn.git")
             (commit version)))
       (file-name (git-file-name name version))
       (sha256
        (base32
         "0qv7ir1fy9vjar3llc72yxmfja3gxm5icdf0y3q57vsn3wcdglkz"))))
    (build-system python-build-system)
    (arguments
     `(#:phases
       (modify-phases %standard-phases
         (add-after 'build 'build-ext
           (lambda _ (invoke "python" "setup.py" "build_ext" "--inplace") #t))
         (replace 'check
           (lambda _
             ;; Restrict OpenBLAS threads to prevent segfaults while testing!
             (setenv "OPENBLAS_NUM_THREADS" "1")

             ;; Some tests require write access to $HOME.
             (setenv "HOME" "/tmp")

             (invoke "pytest" "sklearn" "-m" "not network")))
         ;; FIXME: This fails with permission denied
         (delete 'reset-gzip-timestamps))))
    (inputs
     `(("openblas" ,openblas)))
    (native-inputs
     `(("python-pytest" ,python-pytest)
       ("python-pandas" ,python-pandas) ;for tests
       ("python-cython" ,python-cython)))
    (propagated-inputs
     `(("python-numpy" ,python-numpy)
       ("python-scipy" ,python-scipy)))
    (home-page "http://scikit-learn.org/")
    (synopsis "Machine Learning in Python")
    (description
     "Scikit-learn provides simple and efficient tools for data mining and
data analysis.")
    (license license:bsd-3)))

(define-public python2-scikit-learn
  (package-with-python2 python-scikit-learn))

(define-public python-autograd
  (let* ((commit "442205dfefe407beffb33550846434baa90c4de7")
         (revision "0")
         (version (git-version "0.0.0" revision commit)))
    (package
      (name "python-autograd")
      (home-page "https://github.com/HIPS/autograd")
      (source (origin
                (method git-fetch)
                (uri (git-reference
                      (url home-page)
                      (commit commit)))
                (sha256
                 (base32
                  "189sv2xb0mwnjawa9z7mrgdglc1miaq93pnck26r28fi1jdwg0z4"))
                (file-name (git-file-name name version))))
      (version version)
      (build-system python-build-system)
      (native-inputs
       `(("python-nose" ,python-nose)
         ("python-pytest" ,python-pytest)))
      (propagated-inputs
       `(("python-future" ,python-future)
         ("python-numpy" ,python-numpy)))
      (arguments
       `(#:phases (modify-phases %standard-phases
                    (replace 'check
                      (lambda _
                        (invoke "py.test" "-v"))))))
      (synopsis "Efficiently computes derivatives of NumPy code")
      (description "Autograd can automatically differentiate native Python and
NumPy code.  It can handle a large subset of Python's features, including loops,
ifs, recursion and closures, and it can even take derivatives of derivatives
of derivatives.  It supports reverse-mode differentiation
(a.k.a. backpropagation), which means it can efficiently take gradients of
scalar-valued functions with respect to array-valued arguments, as well as
forward-mode differentiation, and the two can be composed arbitrarily.  The
main intended application of Autograd is gradient-based optimization.")
      (license license:expat))))

(define-public python2-autograd
  (package-with-python2 python-autograd))

(define-public lightgbm
  (package
    (name "lightgbm")
    (version "2.0.12")
    (source (origin
              (method url-fetch)
              (uri (string-append
                    "https://github.com/Microsoft/LightGBM/archive/v"
                    version ".tar.gz"))
              (sha256
               (base32
                "132zf0yk0545mg72hyzxm102g3hpb6ixx9hnf8zd2k55gas6cjj1"))
              (file-name (string-append name "-" version ".tar.gz"))))
    (native-inputs
     `(("python-pytest" ,python-pytest)
       ("python-nose" ,python-nose)))
    (inputs
     `(("openmpi" ,openmpi)))
    (propagated-inputs
     `(("python-numpy" ,python-numpy)
       ("python-scipy" ,python-scipy)))
    (arguments
     `(#:configure-flags
       '("-DUSE_MPI=ON")
       #:phases
       (modify-phases %standard-phases
         (replace 'check
           (lambda* (#:key outputs #:allow-other-keys)
             (with-directory-excursion ,(string-append "../LightGBM-" version)
               (invoke "pytest" "tests/c_api_test/test_.py")))))))
    (build-system cmake-build-system)
    (home-page "https://github.com/Microsoft/LightGBM")
    (synopsis "Gradient boosting framework based on decision tree algorithms")
    (description "LightGBM is a gradient boosting framework that uses tree
based learning algorithms.  It is designed to be distributed and efficient with
the following advantages:

@itemize
@item Faster training speed and higher efficiency
@item Lower memory usage
@item Better accuracy
@item Parallel and GPU learning supported (not enabled in this package)
@item Capable of handling large-scale data
@end itemize\n")
    (license license:expat)))

(define-public vowpal-wabbit
  ;; Language bindings not included.
  (package
    (name "vowpal-wabbit")
    (version "8.5.0")
    (source (origin
              (method url-fetch)
              (uri (string-append
                    "https://github.com/JohnLangford/vowpal_wabbit/archive/"
                    version ".tar.gz"))
              (sha256
               (base32
                "0clp2kb7rk5sckhllxjr5a651awf4s8dgzg4659yh4hf5cqnf0gr"))
              (file-name (string-append name "-" version ".tar.gz"))))
    (inputs
     `(("boost" ,boost)
       ("zlib" ,zlib)))
    (arguments
     `(#:configure-flags
       (list (string-append "--with-boost="
                            (assoc-ref %build-inputs "boost")))))
    (build-system gnu-build-system)
    (home-page "https://github.com/JohnLangford/vowpal_wabbit")
    (synopsis "Fast machine learning library for online learning")
    (description "Vowpal Wabbit is a machine learning system with techniques
such as online, hashing, allreduce, reductions, learning2search, active, and
interactive learning.")
    (license license:bsd-3)))