summaryrefslogtreecommitdiff
path: root/gnu
diff options
context:
space:
mode:
authorguix@mawumag.com <guix@mawumag.com>2024-06-20 08:50:03 +0000
committerRicardo Wurmus <rekado@elephly.net>2024-07-01 15:55:33 +0200
commit58ead4baf9596bafbfe1299c48795c9d54af671e (patch)
tree44188555dbdce21bee37346b0487b7c144dc2805 /gnu
parentb77491909bb5b8bd7a4f4c855db7f29218f3b8b7 (diff)
gnu: Add python-mofapy2.
* gnu/packages/bioinformatics.scm (python-mofapy2): New variable. Change-Id: Ide92878258511b3daf4e56d5faa94d190fdee62f Signed-off-by: Ricardo Wurmus <rekado@elephly.net>
Diffstat (limited to 'gnu')
-rw-r--r--gnu/packages/bioinformatics.scm44
1 files changed, 44 insertions, 0 deletions
diff --git a/gnu/packages/bioinformatics.scm b/gnu/packages/bioinformatics.scm
index 58c0f07e87..0484ea3b0d 100644
--- a/gnu/packages/bioinformatics.scm
+++ b/gnu/packages/bioinformatics.scm
@@ -4491,6 +4491,50 @@ It is designed to provide functionality to load, process, and store multimodal
omics data.")
(license license:bsd-3)))
+(define-public python-mofapy2
+ (package
+ (name "python-mofapy2")
+ (version "0.7.1")
+ (source
+ (origin
+ ;; The tarball from PyPi doesn't include tests.
+ (method git-fetch)
+ (uri (git-reference
+ (url "https://github.com/bioFAM/mofapy2")
+ (commit (string-append "v" version))))
+ (file-name (git-file-name name version))
+ (sha256
+ (base32
+ "0ahhnqk6gjrhyq286mrd5n7mxcv8l6040ffsawbjx9maqx8wbam0"))))
+ (build-system pyproject-build-system)
+ (arguments
+ (list
+ #:test-flags
+ ;; cupy is an optional dependency, which
+ ;; itself has nonfree dependencies (CUDA)
+ '(list "--ignore=mofapy2/notebooks/test_cupy.py")))
+ (propagated-inputs (list python-anndata
+ python-h5py
+ python-numpy
+ python-pandas
+ python-scikit-learn
+ python-scipy))
+ (native-inputs (list python-poetry-core
+ python-pytest))
+ (home-page "https://biofam.github.io/MOFA2/")
+ (synopsis "Multi-omics factor analysis")
+ (description "MOFA is a factor analysis model that provides a general
+framework for the integration of multi-omic data sets in an unsupervised
+fashion. Intuitively, MOFA can be viewed as a versatile and statistically
+rigorous generalization of principal component analysis to multi-omics data.
+Given several data matrices with measurements of multiple -omics data types on
+the same or on overlapping sets of samples, MOFA infers an interpretable
+low-dimensional representation in terms of a few latent factors. These learnt
+factors represent the driving sources of variation across data modalities,
+thus facilitating the identification of cellular states or disease
+subgroups.")
+ (license license:lgpl3)))
+
(define-public python-pyega3
(deprecated-package "python-pyega3" python-ega-download-client))