summaryrefslogtreecommitdiff
path: root/gnu/packages/bioinformatics.scm
diff options
context:
space:
mode:
authorRicardo Wurmus <rekado@elephly.net>2021-08-27 13:24:19 +0200
committerRicardo Wurmus <rekado@elephly.net>2021-08-27 13:37:29 +0200
commit17c765e2e1b425c5be06bb1701749656e3d84f4b (patch)
tree47ccca806aea8659a4b1c8d86f6e84c1bf1fd599 /gnu/packages/bioinformatics.scm
parent63a5090869fac4f2b1c310d02b41d29669f3f389 (diff)
gnu: Add r-cytonorm.
* gnu/packages/bioinformatics.scm (r-cytonorm): New variable.
Diffstat (limited to 'gnu/packages/bioinformatics.scm')
-rw-r--r--gnu/packages/bioinformatics.scm39
1 files changed, 39 insertions, 0 deletions
diff --git a/gnu/packages/bioinformatics.scm b/gnu/packages/bioinformatics.scm
index e663ff2591..1775f5a15e 100644
--- a/gnu/packages/bioinformatics.scm
+++ b/gnu/packages/bioinformatics.scm
@@ -14903,3 +14903,42 @@ copy number estimation, as described by
integration, exploration, and analysis of high-dimensional single-cell
cytometry and imaging data.")
(license license:expat))))
+
+(define-public r-cytonorm
+ (let ((commit "e4b9d343ee65db3c422800f1db3e77c25abde987")
+ (revision "1"))
+ (package
+ (name "r-cytonorm")
+ (version (git-version "0.0.7" revision commit))
+ (source
+ (origin
+ (method git-fetch)
+ (uri (git-reference
+ (url "https://github.com/saeyslab/CytoNorm")
+ (commit commit)))
+ (file-name (git-file-name name version))
+ (sha256
+ (base32
+ "0h2rdy15i4zymd4dv60n5w0frbsdbmzpv99dgm0l2dn041qv7fah"))))
+ (properties `((upstream-name . "CytoNorm")))
+ (build-system r-build-system)
+ (propagated-inputs
+ `(("r-cytoml" ,r-cytoml)
+ ("r-dplyr" ,r-dplyr)
+ ("r-emdist" ,r-emdist)
+ ("r-flowcore" ,r-flowcore)
+ ("r-flowsom" ,r-flowsom)
+ ("r-flowworkspace" ,r-flowworkspace)
+ ("r-ggplot2" ,r-ggplot2)
+ ("r-gridextra" ,r-gridextra)
+ ("r-pheatmap" ,r-pheatmap)
+ ("r-stringr" ,r-stringr)))
+ (home-page "https://github.com/saeyslab/CytoNorm")
+ (synopsis "Normalize cytometry data measured across multiple batches")
+ (description
+ "This package can be used to normalize cytometry samples when a control
+sample is taken along in each of the batches. This is done by first
+identifying multiple clusters/cell types, learning the batch effects from the
+control samples and applying quantile normalization on all markers of
+interest.")
+ (license license:gpl2+))))